TY - JOUR
T1 - Development and validation of a machine learning model predicting illness trajectory and hospital utilization of COVID-19 patients
T2 - A nationwide study
AU - Roimi, Michael
AU - Gutman, Rom
AU - Somer, Jonathan
AU - Ben Arie, Asaf
AU - Calman, Ido
AU - Bar-Lavie, Yaron
AU - Gelbshtein, Udi
AU - Liverant-Taub, Sigal
AU - Ziv, Arnona
AU - Eytan, Danny
AU - Gorfine, Malka
AU - Shalit, Uri
N1 - Publisher Copyright:
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - Objective: The spread of coronavirus disease 2019 (COVID-19) has led to severe strain on hospital capacity in many countries. We aim to develop a model helping planners assess expected COVID-19 hospital resource utilization based on individual patient characteristics. Materials and Methods: We develop a model of patient clinical course based on an advanced multistate survival model. The model predicts the patient's disease course in terms of clinical states-critical, severe, or moderate. The model also predicts hospital utilization on the level of entire hospitals or healthcare systems. We cross-validated the model using a nationwide registry following the day-by-day clinical status of all hospitalized COVID-19 patients in Israel from March 1 to May 2, 2020 (n = 2703). Results: Per-day mean absolute errors for predicted total and critical care hospital bed utilization were 4.72 ± 1.07 and 1.68 ± 0.40, respectively, over cohorts of 330 hospitalized patients; areas under the curve for prediction of critical illness and in-hospital mortality were 0.88 ± 0.04 and 0.96 ± 0.04, respectively. We further present the impact of patient influx scenarios on day-by-day healthcare system utilization. We provide an accompanying R software package. Discussion: The proposed model accurately predicts total and critical care hospital utilization. The model enables evaluating impacts of patient influx scenarios on utilization, accounting for the state of currently hospitalized patients and characteristics of incoming patients. We show that accurate hospital load predictions were possible using only a patient's age, sex, and day-by-day clinical state (critical, severe, or moderate). Conclusions: The multistate model we develop is a powerful tool for predicting individual-level patient outcomes and hospital-level utilization.
AB - Objective: The spread of coronavirus disease 2019 (COVID-19) has led to severe strain on hospital capacity in many countries. We aim to develop a model helping planners assess expected COVID-19 hospital resource utilization based on individual patient characteristics. Materials and Methods: We develop a model of patient clinical course based on an advanced multistate survival model. The model predicts the patient's disease course in terms of clinical states-critical, severe, or moderate. The model also predicts hospital utilization on the level of entire hospitals or healthcare systems. We cross-validated the model using a nationwide registry following the day-by-day clinical status of all hospitalized COVID-19 patients in Israel from March 1 to May 2, 2020 (n = 2703). Results: Per-day mean absolute errors for predicted total and critical care hospital bed utilization were 4.72 ± 1.07 and 1.68 ± 0.40, respectively, over cohorts of 330 hospitalized patients; areas under the curve for prediction of critical illness and in-hospital mortality were 0.88 ± 0.04 and 0.96 ± 0.04, respectively. We further present the impact of patient influx scenarios on day-by-day healthcare system utilization. We provide an accompanying R software package. Discussion: The proposed model accurately predicts total and critical care hospital utilization. The model enables evaluating impacts of patient influx scenarios on utilization, accounting for the state of currently hospitalized patients and characteristics of incoming patients. We show that accurate hospital load predictions were possible using only a patient's age, sex, and day-by-day clinical state (critical, severe, or moderate). Conclusions: The multistate model we develop is a powerful tool for predicting individual-level patient outcomes and hospital-level utilization.
KW - COVID-19
KW - healthcare facilities
KW - hospital utilization
KW - multistate model
KW - survival analysis
UR - http://www.scopus.com/inward/record.url?scp=85106134202&partnerID=8YFLogxK
U2 - 10.1093/jamia/ocab005
DO - 10.1093/jamia/ocab005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33479727
AN - SCOPUS:85106134202
SN - 1067-5027
VL - 28
SP - 1188
EP - 1196
JO - Journal of the American Medical Informatics Association : JAMIA
JF - Journal of the American Medical Informatics Association : JAMIA
IS - 6
ER -