TY - JOUR
T1 - Deterministic Min-Cost Matching with Delays
AU - Azar, Yossi
AU - Jacob Fanani, Amit
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - We consider the online Minimum-Cost Perfect Matching with Delays (MPMD) problem introduced by Emek et al. (STOC 2016), in which a general metric space is given, and requests for points in space are submitted in different times in this space by an adversary. The goal is to match requests, while minimizing the sum of distances between matched pairs in addition to the time intervals passed from the moment each request appeared until it is matched. In the online Minimum-Cost Bipartite Perfect Matching with Delays (MBPMD) problem introduced by Ashlagi et al. (APPROX/RANDOM 2017), each request is also associated with one of two classes, and requests can only be matched with requests of the other class. Previous algorithms for the problems mentioned above, include randomized O(log (n)) -competitive algorithms for known and finite metric spaces, n being the size of the metric space, and a deterministic O(m) -competitive algorithm, m being the number of requests. We introduce O(1𝜖mlog2(32+𝜖))-competitive deterministic algorithms for both problems and for any fixed 𝜖 > 0. In particular, for a small enough 𝜖 the competitive ratio becomes O(m0.59). These are the first deterministic algorithms for the mentioned online matching problems, achieving a sub-linear competitive ratio. We also show that the analysis of our algorithms is tight. Our algorithms do not need to know the metric space in advance.
AB - We consider the online Minimum-Cost Perfect Matching with Delays (MPMD) problem introduced by Emek et al. (STOC 2016), in which a general metric space is given, and requests for points in space are submitted in different times in this space by an adversary. The goal is to match requests, while minimizing the sum of distances between matched pairs in addition to the time intervals passed from the moment each request appeared until it is matched. In the online Minimum-Cost Bipartite Perfect Matching with Delays (MBPMD) problem introduced by Ashlagi et al. (APPROX/RANDOM 2017), each request is also associated with one of two classes, and requests can only be matched with requests of the other class. Previous algorithms for the problems mentioned above, include randomized O(log (n)) -competitive algorithms for known and finite metric spaces, n being the size of the metric space, and a deterministic O(m) -competitive algorithm, m being the number of requests. We introduce O(1𝜖mlog2(32+𝜖))-competitive deterministic algorithms for both problems and for any fixed 𝜖 > 0. In particular, for a small enough 𝜖 the competitive ratio becomes O(m0.59). These are the first deterministic algorithms for the mentioned online matching problems, achieving a sub-linear competitive ratio. We also show that the analysis of our algorithms is tight. Our algorithms do not need to know the metric space in advance.
KW - Bipartite matching
KW - Competitive analysis
KW - Delayed service
KW - Matching
KW - Online algorithm
UR - http://www.scopus.com/inward/record.url?scp=85077542103&partnerID=8YFLogxK
U2 - 10.1007/s00224-019-09963-7
DO - 10.1007/s00224-019-09963-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85077542103
SN - 1432-4350
VL - 64
SP - 572
EP - 592
JO - Theory of Computing Systems
JF - Theory of Computing Systems
IS - 4
ER -