Detecting Parkinson's disease from interactions with a search engine: Is expert knowledge sufficient?

Liron Allerhand, Brit Youngmann, Elad Yom-Tov, David Arkadir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Parkinson's disease (PD) is a slowly progressing neurodegener-ative disease with early manifestation of motor signs. Recently, there has been a growing interest in developing automatic tools that can assess motor function in PD patients. Here we show that mouse tracking data collected during people's interaction with a search engine can be used to distinguish PD patients from similar, non-diseased users and present a methodology developed for the diagnosis of PD from these data. A main challenge we address is the extraction of informative features from raw mouse tracking data. We do so in two complementary ways: First, we manually construct expert-recommended features, aiming to identify abnormalities in motor behaviors. Second, we use an unsupervised representation learning technique to map these raw data to high-level features. Using all features, a Random Forest classifier is then used to distinguish PD patients from controls, achieving an AUC of 0.92, while results using only expert-generated or auto-generated features are 0.87 and 0.83, resp. Our results indicate that mouse tracking data can help in detecting users at early stages of PD, and that both expert-generated features and unsupervised techniques for feature generation are required to achieve the best possible performance.

Original languageEnglish
Title of host publicationCIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
EditorsNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
PublisherAssociation for Computing Machinery
Pages1539-1542
Number of pages4
ISBN (Electronic)9781450360142
DOIs
StatePublished - 17 Oct 2018
Externally publishedYes
Event27th ACM International Conference on Information and Knowledge Management, CIKM 2018 - Torino, Italy
Duration: 22 Oct 201826 Oct 2018

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Country/TerritoryItaly
CityTorino
Period22/10/1826/10/18

Keywords

  • Feature extraction
  • Health
  • Mouse tracking
  • Parkinson's

Fingerprint

Dive into the research topics of 'Detecting Parkinson's disease from interactions with a search engine: Is expert knowledge sufficient?'. Together they form a unique fingerprint.

Cite this