TY - GEN
T1 - Detailed numerical modeling of a hybrid PCM-air heat sink
AU - Kozak, Y.
AU - Ziskind, G.
PY - 2013
Y1 - 2013
N2 - The ability of phase-change materials (PCMs) to absorb large amounts of heat without significant rise of their temperature during the melting process may be utilized in thermal energy storage and passive thermal management. This paper deals with numerical modeling of a hybrid PCM-air heat sink, in which heat may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. Under the assumptions of perfect insulation (except for the air fins), identity and symmetry between all PCM channels, and negligible 3-D boundary effects, a 2-D model of the problem for half a PCM compartment of the heat sink is solved, saving calculation time and yet taking into account the essential physical phenomena. A commercial program, ANSYS Fluent, is used in order to solve the governing conservation equations. Phasechange is solved using the enthalpy-porosity method. PCM-air interface is modeled using the volume-of-fluid (VOF) approach. The model takes into account natural convection in the liquid PCM and air, volume change, phase- and temperaturedependence of thermal properties, and PCM-air interface interaction. Various scenarios for the hybrid heat sink operation are simulated and compared. The difference in the melting patterns is analyzed for the cases of heating with and without the fan operating. The solidification process with the fan operating is also simulated. It is shown that the VOF model enables simulating realistic void formation in the solidification process.
AB - The ability of phase-change materials (PCMs) to absorb large amounts of heat without significant rise of their temperature during the melting process may be utilized in thermal energy storage and passive thermal management. This paper deals with numerical modeling of a hybrid PCM-air heat sink, in which heat may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. Under the assumptions of perfect insulation (except for the air fins), identity and symmetry between all PCM channels, and negligible 3-D boundary effects, a 2-D model of the problem for half a PCM compartment of the heat sink is solved, saving calculation time and yet taking into account the essential physical phenomena. A commercial program, ANSYS Fluent, is used in order to solve the governing conservation equations. Phasechange is solved using the enthalpy-porosity method. PCM-air interface is modeled using the volume-of-fluid (VOF) approach. The model takes into account natural convection in the liquid PCM and air, volume change, phase- and temperaturedependence of thermal properties, and PCM-air interface interaction. Various scenarios for the hybrid heat sink operation are simulated and compared. The difference in the melting patterns is analyzed for the cases of heating with and without the fan operating. The solidification process with the fan operating is also simulated. It is shown that the VOF model enables simulating realistic void formation in the solidification process.
UR - http://www.scopus.com/inward/record.url?scp=84892977030&partnerID=8YFLogxK
U2 - 10.1115/HT2013-17350
DO - 10.1115/HT2013-17350
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84892977030
SN - 9780791855485
T3 - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
BT - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
T2 - ASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 14 July 2013 through 19 July 2013
ER -