Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom

Anton Frisk Kockum, Per Delsing, Göran Johansson

Research output: Contribution to journalArticlepeer-review

Abstract

In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as pointlike when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using surface acoustic waves show that a single artificial atom can be coupled to a bosonic field at several points wavelengths apart. Here, we theoretically study this type of system. We find that the multiple coupling points give rise to a frequency dependence in the coupling strength between the atom and its environment and also in the Lamb shift of the atom. The frequency dependence is given by the discrete Fourier transform of the coupling-point coordinates and can therefore be designed. We discuss a number of possible applications for this phenomenon, including tunable coupling, single-atom lasing, and other effects that can be achieved by designing the relative coupling strengths of different transitions in a multilevel atom.

Original languageEnglish
Article number013837
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume90
Issue number1
DOIs
StatePublished - 30 Jul 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom'. Together they form a unique fingerprint.

Cite this