Designed aromatic homo-dipeptides: Formation of ordered nanostructures and potential nanotechnological applications

Meital Reches, Ehud Gazit

Research output: Contribution to journalArticlepeer-review

Abstract

Molecular self-assembly offers new routes for the fabrication of novel materials at the nano-scale. Peptide-based nanostructures represent nano-objects of particular interest, as they are biocompatible, can be easily synthesized in large amounts, can be decorated with functional elements and can be used in various biological and non-biological applications. We had previously revealed the formation of highly ordered tubular structures by the diphenylalanine peptide, the core recognition motif of Alzheimer's β-amyloid polypeptide, due to specific aromatic interactions. We further confirmed this model and demonstrated that a non-charged peptide analogue, Ac-Phe-Phe-NH2, self-assembled into similar tubular structures. We later explored other amine and carboxyl modified diphenylalanine peptide analogues and revealed that these dipeptides can form ordered tubular structures at the nanometric scale. Moreover, a very similar peptide, the diphenylglycine, self-assembled into ordered nano-spherical assemblies. Here we extend our research and explore the self-assembly of other homo-aromatic dipeptides in which their phenyl side-chains are modified with halogen atoms (di-para-fluoro-Phe, di-pentafluoro-Phe, di-para-iodo-Phe), additional phenyl groups (di-4-phenyl-Phe), or with nitro substitutions (di-para-nitro-Phe). We also probed the effect of the alteration of the phenyl groups with naphtyl groups (di-D-1-Nal and di-D-2-Nal). In all cases, well-ordered nanostructures were obtained and studied by scanning electron microscopy, transmission electron microscopy and vibrational spectroscopy. Taken together, the current work and previous ones define the homo-aromatic dipeptide as a central motif for the formation of ordered self-assembled tubular, spherical and two-dimensional structures at the nano-scale.

Original languageEnglish
Pages (from-to)S10-S19
JournalPhysical Biology
Volume3
Issue number1
DOIs
StatePublished - 1 Mar 2006

Fingerprint

Dive into the research topics of 'Designed aromatic homo-dipeptides: Formation of ordered nanostructures and potential nanotechnological applications'. Together they form a unique fingerprint.

Cite this