Abstract
Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/m2, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.
Original language | English |
---|---|
Pages (from-to) | 1263-1270 |
Number of pages | 8 |
Journal | Conference Record of the IEEE Photovoltaic Specialists Conference |
Volume | 2 |
State | Published - May 1990 |
Externally published | Yes |
Event | Twenty First IEEE Photovoltaic Specialists Conference - 1990 Part 2 (of 2) - Kissimimee, FL, USA Duration: 21 May 1990 → 25 May 1990 |