Deep SimNets

Nadav Cohen, Or Sharir, Amnon Shashua

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Scopus citations

Abstract

We present a deep layered architecture that generalizes convolutional neural networks (ConvNets). The architecture, called SimNets, is driven by two operators: (i) a similarity function that generalizes inner-product, and (ii) a log-mean-exp function called MEX that generalizes maximum and average. The two operators applied in succession give rise to a standard neuron but in 'feature space'. The feature spaces realized by SimNets depend on the choice of the similarity operator. The simplest setting, which corresponds to a convolution, realizes the feature space of the Exponential kernel, while other settings realize feature spaces of more powerful kernels (Generalized Gaussian, which includes as special cases RBF and Laplacian), or even dynamically learned feature spaces (Generalized Multiple Kernel Learning). As a result, the SimNet contains a higher abstraction level compared to a traditional ConvNet. We argue that enhanced expressiveness is important when the networks are small due to run-time constraints (such as those imposed by mobile applications). Empirical evaluation validates the superior expressiveness of SimNets, showing a significant gain in accuracy over ConvNets when computational resources at run-time are limited. We also show that in large-scale settings, where computational complexity is less of a concern, the additional capacity of SimNets can be controlled with proper regularization, yielding accuracies comparable to state of the art ConvNets.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages4782-4791
Number of pages10
ISBN (Electronic)9781467388504
DOIs
StatePublished - 9 Dec 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: 26 Jun 20161 Jul 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period26/06/161/07/16

Funding

FundersFunder number
Google Fellowship in Machine Learning
Intel CorporationICRI-CI 9-2012-6133
Israel Science Foundation1790/12

    Fingerprint

    Dive into the research topics of 'Deep SimNets'. Together they form a unique fingerprint.

    Cite this