Deep meta functionals for shape representation

Gidi Littwin, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We present a new method for 3D shape reconstruction from a single image, in which a deep neural network directly maps an image to a vector of network weights. The network parametrized by these weights represents a 3D shape by classifying every point in the volume as either within or outside the shape. The new representation has virtually unlimited capacity and resolution, and can have an arbitrary topology. Our experiments show that it leads to more accurate shape inference from a 2D projection than the existing methods, including voxel-, silhouette-, and mesh-based methods. The code will be available at: Https: //

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages10
ISBN (Electronic)9781728148038
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 20192 Nov 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499


Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of


FundersFunder number
Horizon 2020 Framework Programme
European Research Council
Horizon 2020725974


    Dive into the research topics of 'Deep meta functionals for shape representation'. Together they form a unique fingerprint.

    Cite this