TY - JOUR
T1 - Decreased A-to-I RNA editing as a source of keratinocytes’ dsRNA in psoriasis
AU - Shallev, Lea
AU - Kopel, Eli
AU - Feiglin, Ariel
AU - Leichner, Gil S.
AU - Avni, Dror
AU - Sidi, Yechezkel
AU - Eisenberg, Eli
AU - Barzilai, Aviv
AU - Levanon, Erez Y.
AU - Greenberger, Shoshana
N1 - Publisher Copyright:
© 2018 Shallev et al.
PY - 2018/6
Y1 - 2018/6
N2 - Recognition of dsRNA molecules activates the MDA5–MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.
AB - Recognition of dsRNA molecules activates the MDA5–MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.
KW - A-to-I
KW - Interferon
KW - Psoriasis
KW - RNA editing
UR - http://www.scopus.com/inward/record.url?scp=85047362987&partnerID=8YFLogxK
U2 - 10.1261/rna.064659.117
DO - 10.1261/rna.064659.117
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85047362987
SN - 1355-8382
VL - 24
SP - 828
EP - 840
JO - RNA
JF - RNA
IS - 6
ER -