TY - JOUR
T1 - Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect
AU - Maehrlein, Sebastian F.
AU - Joshi, Prakriti P.
AU - Huber, Lucas
AU - Wang, Feifan
AU - Cherasse, Marie
AU - Liu, Yufeng
AU - Juraschek, Dominik M.
AU - Mosconi, Edoardo
AU - Meggiolaro, Daniele
AU - De Angelis, Filippo
AU - Zhu, X. Y.
PY - 2021/2/16
Y1 - 2021/2/16
N2 - The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.
AB - The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.
KW - four-wave mixing
KW - lead halide perovskites
KW - light propagation
KW - multidimensional coherent spectroscopy
KW - nonlinear polarization
UR - http://www.scopus.com/inward/record.url?scp=85100981751&partnerID=8YFLogxK
U2 - 10.1073/pnas.2022268118
DO - 10.1073/pnas.2022268118
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33558241
AN - SCOPUS:85100981751
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 7
ER -