TY - JOUR
T1 - Dab2 inhibits the cholesterol-dependent activation of JNK by TGF-β
AU - Shapira, Keren E.
AU - Hirschhorn, Tal
AU - Barzilay, Lior
AU - Smorodinsky, Nechama I.
AU - Henis, Yoav I.
AU - Ehrlich, Marcelo
PY - 2014/5/15
Y1 - 2014/5/15
N2 - Transforming growth factor-β (TGF-β) ligands activate Smad-mediated and noncanonical signaling pathways in a cell context-dependent manner. Localization of signaling receptors to distinct membrane domains is a potential source of signaling output diversity. The tumor suppressor/endocytic adaptor protein disabled-2 (Dab2) was proposed as a modulator of TGF-β signaling. However, the molecular mechanism(s) involved in the regulation of TGF-β signaling by Dab2 were not known. Here we investigate these issues by combining biophysical studies of the lateral mobility and endocytosis of the type I TGF-β receptor (TβRI) with TGF-β phosphoprotein signaling assays. Our findings demonstrate that Dab2 interacts with TβRI to restrict its lateral diffusion at the plasma membrane and enhance its clathrin-mediated endocytosis. Small interfering RNA-mediated knockdown of Dab2 or Dab2 overexpression shows that Dab2 negatively regulates TGF-β-induced c-Jun N-terminal kinase (JNK) activation, whereas activation of the Smad pathway is unaffected. Moreover, activation of JNK by TGF-β in the absence of Dab2 is disrupted by cholesterol depletion. These data support a model in which Dab2 regulates the domain localization of TβRI in the membrane, balancing TGF-β signaling via the Smad and JNK pathways.
AB - Transforming growth factor-β (TGF-β) ligands activate Smad-mediated and noncanonical signaling pathways in a cell context-dependent manner. Localization of signaling receptors to distinct membrane domains is a potential source of signaling output diversity. The tumor suppressor/endocytic adaptor protein disabled-2 (Dab2) was proposed as a modulator of TGF-β signaling. However, the molecular mechanism(s) involved in the regulation of TGF-β signaling by Dab2 were not known. Here we investigate these issues by combining biophysical studies of the lateral mobility and endocytosis of the type I TGF-β receptor (TβRI) with TGF-β phosphoprotein signaling assays. Our findings demonstrate that Dab2 interacts with TβRI to restrict its lateral diffusion at the plasma membrane and enhance its clathrin-mediated endocytosis. Small interfering RNA-mediated knockdown of Dab2 or Dab2 overexpression shows that Dab2 negatively regulates TGF-β-induced c-Jun N-terminal kinase (JNK) activation, whereas activation of the Smad pathway is unaffected. Moreover, activation of JNK by TGF-β in the absence of Dab2 is disrupted by cholesterol depletion. These data support a model in which Dab2 regulates the domain localization of TβRI in the membrane, balancing TGF-β signaling via the Smad and JNK pathways.
UR - http://www.scopus.com/inward/record.url?scp=84901239005&partnerID=8YFLogxK
U2 - 10.1091/mbc.E13-09-0537
DO - 10.1091/mbc.E13-09-0537
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84901239005
SN - 1059-1524
VL - 25
SP - 1620
EP - 1628
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
IS - 10
ER -