Cullin neddylation may allosterically tune polyubiquitin chain length and topology

Melis Onel, Fidan Sumbul, Jin Liu, Ruth Nussinov*, Turkan Haliloglu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Conjugation of Nedd8 (neddylation) to Cullins (Cul) in Cul-RING E3 ligases (CRLs) stimulates ubiquitination and polyubiquitination of protein substrates. CRL is made up of two Cul-flanked arms: one consists of the substrate-binding and adaptor proteins and the other consists of E2 and Ring-box protein (Rbx). Polyubiquitin chain length and topology determine the substrate fate. Here, we ask how polyubiquitin chains are accommodated in the limited space available between the two arms and what determines the polyubiquitin linkage topology. We focus on Cul5 and Rbx1 in three states: before Cul5 neddylation (closed state), after neddylation (open state), and after deneddylation, exploiting molecular dynamics simulations and the Gaussian Network Model. We observe that regulation of substrate ubiquitination and polyubiquitination takes place through Rbx1 rotations, which are controlled by Nedd8-Rbx1 allosteric communication. Allosteric propagation proceeds from Nedd8 via Cul5 dynamic hinges and hydrogen bonds between the C-terminal domain of Cul5 (Cul5CTD) and Rbx1 (Cul5CTD residues R538/R569 and Rbx1 residue E67, or Cul5CTD E474/E478/N491 and Rbx1 K105). Importantly, at each ubiquitination step (homogeneous or heterogeneous, linear or branched), the polyubiquitin linkages fit into the distances between the two arms, and these match the inherent CRL conformational tendencies. Hinge sites may constitute drug targets.

Original languageEnglish
Pages (from-to)781-795
Number of pages15
JournalBiochemical Journal
Volume474
Issue number5
DOIs
StatePublished - 1 Mar 2017

Funding

FundersFunder number
Betil Fund
Bogazici UniversityBAP 6512
Turkish State Planning Organization2009K120520
National Institutes of HealthHHSN261200800001E
National Cancer InstituteZIABC010441
European CommissionTÁMOP-4.2.2/B-10/1-2010-0013
Hungarian Scientific Research FundK83314

    Fingerprint

    Dive into the research topics of 'Cullin neddylation may allosterically tune polyubiquitin chain length and topology'. Together they form a unique fingerprint.

    Cite this