Counting Unpredictable Bits: A Simple PRG from One-Way Functions

Noam Mazor*, Rafael Pass

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A central result in the theory of Cryptography, by Håstad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically). Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT). Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log2n). The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion of unpredictabilty—rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n+ O(log n) unpredictable output bits. Such unpredictable bits can next be “extracted” into a pseudorandom string using standard techniques.

Original languageEnglish
Title of host publicationTheory of Cryptography - 21st International Conference, TCC 2023, Proceedings
EditorsGuy Rothblum, Hoeteck Wee
PublisherSpringer Science and Business Media Deutschland GmbH
Pages191-218
Number of pages28
ISBN (Print)9783031486142
DOIs
StatePublished - 2023
Event21st International conference on Theory of Cryptography Conference, TCC 2023 - Taipei, Taiwan, Province of China
Duration: 29 Nov 20232 Dec 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14369 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International conference on Theory of Cryptography Conference, TCC 2023
Country/TerritoryTaiwan, Province of China
CityTaipei
Period29/11/232/12/23

Funding

FundersFunder number
National Science FoundationCNS 2149305, CNS-2128519, SATC-1704788, RI-1703846
Air Force Office of Scientific ResearchFA9550-18-1-0267
Defense Advanced Research Projects AgencyHR00110C0086
Israel Science Foundation666/19

    Fingerprint

    Dive into the research topics of 'Counting Unpredictable Bits: A Simple PRG from One-Way Functions'. Together they form a unique fingerprint.

    Cite this