Counting independent sets in amenable groups

Raimundo Briceño*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Given a locally finite graph, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function, consider the free energy of the hardcore model defined on the set of independent sets in weighted by. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if, there is no efficient approximation scheme, unless. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.

Original languageEnglish
JournalErgodic Theory and Dynamical Systems
Volume149
Issue number1
DOIs
StatePublished - 24 May 2023
Externally publishedYes

Keywords

  • Gibbs measure
  • amenable group
  • computational phase transition
  • entropy
  • independent set
  • strong spatial mixing

Fingerprint

Dive into the research topics of 'Counting independent sets in amenable groups'. Together they form a unique fingerprint.

Cite this