TY - JOUR

T1 - Counting independent sets in amenable groups

AU - Briceño, Raimundo

N1 - Publisher Copyright:
© The Author(s), 2023. Published by Cambridge University Press.

PY - 2023/5/24

Y1 - 2023/5/24

N2 - Given a locally finite graph, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function, consider the free energy of the hardcore model defined on the set of independent sets in weighted by. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if, there is no efficient approximation scheme, unless. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.

AB - Given a locally finite graph, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function, consider the free energy of the hardcore model defined on the set of independent sets in weighted by. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if, there is no efficient approximation scheme, unless. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.

KW - Gibbs measure

KW - amenable group

KW - computational phase transition

KW - entropy

KW - independent set

KW - strong spatial mixing

UR - http://www.scopus.com/inward/record.url?scp=85160827148&partnerID=8YFLogxK

U2 - 10.1017/etds.2023.38

DO - 10.1017/etds.2023.38

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:85160827148

SN - 0143-3857

VL - 149

JO - Ergodic Theory and Dynamical Systems

JF - Ergodic Theory and Dynamical Systems

IS - 1

ER -