TY - JOUR
T1 - Correction filter for single image super-resolution
T2 - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020
AU - Hussein, Shady Abu
AU - Tirer, Tom
AU - Giryes, Raja
N1 - Publisher Copyright:
©2020 IEEE.
PY - 2020
Y1 - 2020
N2 - The single image super-resolution task is one of the most examined inverse problems in the past decade. In the recent years, Deep Neural Networks (DNNs) have shown superior performance over alternative methods when the acquisition process uses a fixed known downscaling kernel—typically a bicubic kernel. However, several recent works have shown that in practical scenarios, where the test data mismatch the training data (e.g. when the downscaling kernel is not the bicubic kernel or is not available at training), the leading DNN methods suffer from a huge performance drop. Inspired by the literature on generalized sampling, in this work we propose a method for improving the performance of DNNs that have been trained with a fixed kernel on observations acquired by other kernels. For a known kernel, we design a closed-form correction filter that modifies the low-resolution image to match one which is obtained by another kernel (e.g. bicubic), and thus improves the results of existing pre-trained DNNs. For an unknown kernel, we extend this idea and propose an algorithm for blind estimation of the required correction filter. We show that our approach outperforms other super-resolution methods, which are designed for general downscaling kernels.
AB - The single image super-resolution task is one of the most examined inverse problems in the past decade. In the recent years, Deep Neural Networks (DNNs) have shown superior performance over alternative methods when the acquisition process uses a fixed known downscaling kernel—typically a bicubic kernel. However, several recent works have shown that in practical scenarios, where the test data mismatch the training data (e.g. when the downscaling kernel is not the bicubic kernel or is not available at training), the leading DNN methods suffer from a huge performance drop. Inspired by the literature on generalized sampling, in this work we propose a method for improving the performance of DNNs that have been trained with a fixed kernel on observations acquired by other kernels. For a known kernel, we design a closed-form correction filter that modifies the low-resolution image to match one which is obtained by another kernel (e.g. bicubic), and thus improves the results of existing pre-trained DNNs. For an unknown kernel, we extend this idea and propose an algorithm for blind estimation of the required correction filter. We show that our approach outperforms other super-resolution methods, which are designed for general downscaling kernels.
UR - http://www.scopus.com/inward/record.url?scp=85094416996&partnerID=8YFLogxK
U2 - 10.1109/CVPR42600.2020.00150
DO - 10.1109/CVPR42600.2020.00150
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85094416996
SN - 1063-6919
SP - 1425
EP - 1434
JO - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
JF - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
M1 - 9156619
Y2 - 14 June 2020 through 19 June 2020
ER -