TY - JOUR
T1 - Coordinate density of sets of vectors
AU - Karpovsky, M. G.
AU - Milman, V. D.
PY - 1978
Y1 - 1978
N2 - Let no = 0,n1 ≥1...,n3 ≥1 be given natural numbers, Ji= ∑ t=0 0-1ni+1,..., ∑ t=0 tnt (i=Ji,...,s) and Π t=0 s Ena=(x(t),...., x(1): n= ∑ i=1 s n1 and if rε{lunate} Ji, then x(u)ε{lunate}{0,..., qi-J} A set R⊆∏i3 = 1 Eaji2 is said to be (m1, ...,m3)-dense (1≤m1≤n) if there exist I1⊆J1 such that |L1| = m6 (i = 1,...,s) and |L(I)(R)| = ∏I5 = qlm1 where P(I)(R) is the projection of R on the coordinate axes whose indices lie in I = ∪i5 = jL1. In this paper we establish necessary and sufficient conditions for an arbitrary set R⊆∏51 = 1 Ea1n1 with given |R| to be (m1,...,m3)-dense.
AB - Let no = 0,n1 ≥1...,n3 ≥1 be given natural numbers, Ji= ∑ t=0 0-1ni+1,..., ∑ t=0 tnt (i=Ji,...,s) and Π t=0 s Ena=(x(t),...., x(1): n= ∑ i=1 s n1 and if rε{lunate} Ji, then x(u)ε{lunate}{0,..., qi-J} A set R⊆∏i3 = 1 Eaji2 is said to be (m1, ...,m3)-dense (1≤m1≤n) if there exist I1⊆J1 such that |L1| = m6 (i = 1,...,s) and |L(I)(R)| = ∏I5 = qlm1 where P(I)(R) is the projection of R on the coordinate axes whose indices lie in I = ∪i5 = jL1. In this paper we establish necessary and sufficient conditions for an arbitrary set R⊆∏51 = 1 Ea1n1 with given |R| to be (m1,...,m3)-dense.
UR - http://www.scopus.com/inward/record.url?scp=0013247584&partnerID=8YFLogxK
U2 - 10.1016/0012-365X(78)90197-8
DO - 10.1016/0012-365X(78)90197-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0013247584
VL - 24
SP - 177
EP - 184
JO - Discrete Mathematics
JF - Discrete Mathematics
SN - 0012-365X
IS - 2
ER -