TY - JOUR
T1 - Cooling profile following prosthetic preparation of 1-piece dental implants.
AU - Cohen, Omer
AU - Gabay, Eran
AU - Machtei, Eli E.
PY - 2010
Y1 - 2010
N2 - The aim of this study was to evaluate the effect of water irrigation on heat dissipation kinetics following abutment preparation of 1-piece dental implants. UNO 1-piece dental implants were mounted on Plexiglas apparatus clamping the implant at the collar. T-type thermocouple was attached to the first thread of the implant and recorded thermal changes at 100 millisecond intervals. Implants were prepared using highspeed dental turbine at 400,000 RPM with a coarse diamond bur. Once temperature reached 47 degrees C, abutment preparation was discontinued. Thirty implants were divided into 2 groups. Group A: Passive cooling without water irrigation. Group B: Cooling with turbine's water spray adjacent to the implant (30 mL/min). The following parameters were measured: T47 (time from peak temperature to 47 degrees C), T50%, T75% (time until the temperature amplitude decayed by 50% and 75%, respectively), dTemp50%/dt decay, and dTemp75%/dt decay (cooling rate measured at 50% and 75% of amplitude decay, respectively). Water spray irrigation significantly reduced T47 (1.37+/-0.29 seconds vs 19.97+/-3.06 seconds, P<0.0001), T50% (3.04+/-0.34 seconds vs 27.37+/-2.56 seconds, P<0.0001), and T75% (5.71+/-0.57 seconds vs 57.61+/-5.47 seconds, P<0.0001). Water spray irrigation also increased cooling capacity ninefold: dTemp50%/dt decay (4.14+/-0.61 degrees C/s vs 0.48+/-0.06 degrees C/s, P<0.0001), and dTemp50%/dt decay (1.70+/-0.29 degrees C/s vs 0.19+/-0.03 degrees C/s, P<0.0001). The continuous use of water spray adjacent to the abutment following the cessation of implant preparation might prove beneficial for rapid cooling of the implant.
AB - The aim of this study was to evaluate the effect of water irrigation on heat dissipation kinetics following abutment preparation of 1-piece dental implants. UNO 1-piece dental implants were mounted on Plexiglas apparatus clamping the implant at the collar. T-type thermocouple was attached to the first thread of the implant and recorded thermal changes at 100 millisecond intervals. Implants were prepared using highspeed dental turbine at 400,000 RPM with a coarse diamond bur. Once temperature reached 47 degrees C, abutment preparation was discontinued. Thirty implants were divided into 2 groups. Group A: Passive cooling without water irrigation. Group B: Cooling with turbine's water spray adjacent to the implant (30 mL/min). The following parameters were measured: T47 (time from peak temperature to 47 degrees C), T50%, T75% (time until the temperature amplitude decayed by 50% and 75%, respectively), dTemp50%/dt decay, and dTemp75%/dt decay (cooling rate measured at 50% and 75% of amplitude decay, respectively). Water spray irrigation significantly reduced T47 (1.37+/-0.29 seconds vs 19.97+/-3.06 seconds, P<0.0001), T50% (3.04+/-0.34 seconds vs 27.37+/-2.56 seconds, P<0.0001), and T75% (5.71+/-0.57 seconds vs 57.61+/-5.47 seconds, P<0.0001). Water spray irrigation also increased cooling capacity ninefold: dTemp50%/dt decay (4.14+/-0.61 degrees C/s vs 0.48+/-0.06 degrees C/s, P<0.0001), and dTemp50%/dt decay (1.70+/-0.29 degrees C/s vs 0.19+/-0.03 degrees C/s, P<0.0001). The continuous use of water spray adjacent to the abutment following the cessation of implant preparation might prove beneficial for rapid cooling of the implant.
UR - http://www.scopus.com/inward/record.url?scp=77957264840&partnerID=8YFLogxK
U2 - 10.1563/aaid-joi-d-09-00061
DO - 10.1563/aaid-joi-d-09-00061
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 20521943
AN - SCOPUS:77957264840
SN - 0160-6972
VL - 36
SP - 273
EP - 279
JO - Journal of Oral Implantology
JF - Journal of Oral Implantology
IS - 4
ER -