TY - GEN
T1 - Convolutional rectifier networks as generalized tensor decompositions
AU - Cohen, Nadav
AU - Shashua, Amnon
PY - 2016
Y1 - 2016
N2 - Convolutional rectifier networks, i.e. convolutional neural networks with rectified linear activation and max or average pooling, are the cornerstone of modern deep learning. However, despite their wide use and success, our theoretical understanding of the expressive properties that drive these networks is partial at best. On the other hand, we have a much firmer grasp of these issues in the world of arithmetic circuits. Specifically, it is known that convolutional arithmetic circuits possess the property of "complete depth efficiency", meaning that besides a negligible set, all functions realizable by a deep network of polynomial size, require exponential size in order to be realized (or approximated) by a shallow network. In this paper we describe a construction based on generalized tensor decompositions, that transforms convolutional arithmetic circuits into convolutional rectifier networks. We then use mathematical tools available from the world of arithmetic circuits to prove new results. First, we show that convolutional rectifier networks are universal with max pooling but not with average pooling. Second, and more importantly, we show that depth efficiency is weaker with convolutional rectifier networks than it is with convolutional arithmetic circuits. This leads us to believe that developing effective methods for training convolutional arithmetic circuits, thereby fulfilling their expressive potential, may give rise to a deep learning architecture that is provably superior to convolutional rectifier networks but has so far been overlooked by practitioners.
AB - Convolutional rectifier networks, i.e. convolutional neural networks with rectified linear activation and max or average pooling, are the cornerstone of modern deep learning. However, despite their wide use and success, our theoretical understanding of the expressive properties that drive these networks is partial at best. On the other hand, we have a much firmer grasp of these issues in the world of arithmetic circuits. Specifically, it is known that convolutional arithmetic circuits possess the property of "complete depth efficiency", meaning that besides a negligible set, all functions realizable by a deep network of polynomial size, require exponential size in order to be realized (or approximated) by a shallow network. In this paper we describe a construction based on generalized tensor decompositions, that transforms convolutional arithmetic circuits into convolutional rectifier networks. We then use mathematical tools available from the world of arithmetic circuits to prove new results. First, we show that convolutional rectifier networks are universal with max pooling but not with average pooling. Second, and more importantly, we show that depth efficiency is weaker with convolutional rectifier networks than it is with convolutional arithmetic circuits. This leads us to believe that developing effective methods for training convolutional arithmetic circuits, thereby fulfilling their expressive potential, may give rise to a deep learning architecture that is provably superior to convolutional rectifier networks but has so far been overlooked by practitioners.
UR - http://www.scopus.com/inward/record.url?scp=84998891586&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84998891586
T3 - 33rd International Conference on Machine Learning, ICML 2016
SP - 1500
EP - 1519
BT - 33rd International Conference on Machine Learning, ICML 2016
A2 - Balcan, Maria Florina
A2 - Weinberger, Kilian Q.
PB - International Machine Learning Society (IMLS)
T2 - 33rd International Conference on Machine Learning, ICML 2016
Y2 - 19 June 2016 through 24 June 2016
ER -