Convergence time to Nash equilibria

Eyal Even-Dar, Alex Kesselman, Yishay Mansour

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

We study the number of steps required to reach a pure Nash Equilibrium in a load balancing scenario where each job behaves selfishly and attempts to migrate to a machine which will minimize its cost. We consider a variety of load balancing models, including identical, restricted, related and unrelated machines. Our results have a crucial dependence on the weights assigned to jobs. We consider arbitrary weights, integer weights, K distinct weights and identical (unit) weights. We look both at an arbitrary schedule (where the only restriction is that a job migrates to a machine which lowers its cost) and specific efficient schedulers (such as allowing the largest weight job to move first).

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsJos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, Gerhard J. Woeginger
PublisherSpringer Verlag
Pages502-513
Number of pages12
ISBN (Print)3540404937, 9783540404934
DOIs
StatePublished - 2003

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2719
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Convergence time to Nash equilibria'. Together they form a unique fingerprint.

Cite this