Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs

L. Even-Dar Mandel, S. Schochet

Research output: Contribution to journalArticlepeer-review

Abstract

Solutions of certain finite-difference schemes for singularly-perturbed evolutionary PDEs converge as the perturbation parameter and/or the discretization parameters tend to zero. Under suitable hypotheses a sharp convergence rate of order one-half in the time step, uniform in the perturbation parameter, is obtained.

Original languageEnglish
Pages (from-to)587-614
Number of pages28
JournalESAIM: Mathematical Modelling and Numerical Analysis
Volume51
Issue number2
DOIs
StatePublished - 1 Mar 2017

Keywords

  • Discrete Sobolev spaces
  • Rate of convergence
  • Singular limits

Fingerprint

Dive into the research topics of 'Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs'. Together they form a unique fingerprint.

Cite this