TY - JOUR
T1 - Continuum modeling of discrete plant communities
T2 - Why does it work and why is it advantageous?
AU - Meron, Ehud
AU - Bennett, Jamie J.R.
AU - Fernandez-Oto, Cristian
AU - Tzuk, Omer
AU - Zelnik, Yuval R.
AU - Grafi, Gideon
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/10
Y1 - 2019/10
N2 - Understanding ecosystem response to drier climates calls for modeling the dynamics of dryland plant populations, which are crucial determinants of ecosystem function, as they constitute the basal level of whole food webs. Two modeling approaches are widely used in population dynamics, individual (agent)-based models and continuum partial-differential-equation (PDE) models. The latter are advantageous in lending themselves to powerful methodologies of mathematical analysis, but the question of whether they are suitable to describe small discrete plant populations, as is often found in dryland ecosystems, has remained largely unaddressed. In this paper, we first draw attention to two aspects of plants that distinguish them from most other organisms—high phenotypic plasticity and dispersal of stress-tolerant seeds—and argue in favor of PDE modeling, where the state variables that describe population sizes are not discrete number densities, but rather continuous biomass densities. We then discuss a few examples that demonstrate the utility of PDE models in providing deep insights into landscape-scale behaviors, such as the onset of pattern forming instabilities, multiplicity of stable ecosystem states, regular and irregular, and the possible roles of front instabilities in reversing desertification. We briefly mention a few additional examples, and conclude by outlining the nature of the information we should and should not expect to gain from PDE model studies.
AB - Understanding ecosystem response to drier climates calls for modeling the dynamics of dryland plant populations, which are crucial determinants of ecosystem function, as they constitute the basal level of whole food webs. Two modeling approaches are widely used in population dynamics, individual (agent)-based models and continuum partial-differential-equation (PDE) models. The latter are advantageous in lending themselves to powerful methodologies of mathematical analysis, but the question of whether they are suitable to describe small discrete plant populations, as is often found in dryland ecosystems, has remained largely unaddressed. In this paper, we first draw attention to two aspects of plants that distinguish them from most other organisms—high phenotypic plasticity and dispersal of stress-tolerant seeds—and argue in favor of PDE modeling, where the state variables that describe population sizes are not discrete number densities, but rather continuous biomass densities. We then discuss a few examples that demonstrate the utility of PDE models in providing deep insights into landscape-scale behaviors, such as the onset of pattern forming instabilities, multiplicity of stable ecosystem states, regular and irregular, and the possible roles of front instabilities in reversing desertification. We briefly mention a few additional examples, and conclude by outlining the nature of the information we should and should not expect to gain from PDE model studies.
KW - Continuum models
KW - Desertification
KW - Front instabilities
KW - Homoclinic snaking
KW - Individual based models
KW - Partial differential equations
KW - Phenotypic plasticity
KW - Plant populations
KW - Vegetation pattern formation
UR - http://www.scopus.com/inward/record.url?scp=85084562589&partnerID=8YFLogxK
U2 - 10.3390/MATH7100987
DO - 10.3390/MATH7100987
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85084562589
SN - 2227-7390
VL - 7
JO - Mathematics
JF - Mathematics
IS - 10
M1 - 987
ER -