TY - JOUR

T1 - Construction of Sidon Spaces with Applications to Coding

AU - Roth, Ron M.

AU - Raviv, Netanel

AU - Tamo, Itzhak

N1 - Publisher Copyright:
© 1963-2012 IEEE.

PY - 2018/6

Y1 - 2018/6

N2 - A subspace of a finite extension field is called a Sidon space if the product of any two of its elements is unique up to a scalar multiplier from the base field. Sidon spaces were recently introduced by Bachoc et al. as a means to characterize multiplicative properties of subspaces, and yet no explicit constructions were given. In this paper, several constructions of Sidon spaces are provided. In particular, in some of the constructions the relation between k , the dimension of the Sidon space, and n , the dimension of the ambient extension field, is optimal. These constructions are shown to provide cyclic subspace codes, which are useful tools in network coding schemes. To the best of our knowledge, this constitutes the first set of constructions of non-Trivial cyclic subspace codes in which the relation between k and n is polynomial, and in particular, linear. As a result, a conjecture by Trautmann et al. regarding the existence of non-Trivial cyclic subspace codes is resolved for most parameters, and multi-orbit cyclic subspace codes are attained, whose cardinality is within a constant factor (close to 1/2) from the sphere-packing bound for subspace codes.

AB - A subspace of a finite extension field is called a Sidon space if the product of any two of its elements is unique up to a scalar multiplier from the base field. Sidon spaces were recently introduced by Bachoc et al. as a means to characterize multiplicative properties of subspaces, and yet no explicit constructions were given. In this paper, several constructions of Sidon spaces are provided. In particular, in some of the constructions the relation between k , the dimension of the Sidon space, and n , the dimension of the ambient extension field, is optimal. These constructions are shown to provide cyclic subspace codes, which are useful tools in network coding schemes. To the best of our knowledge, this constitutes the first set of constructions of non-Trivial cyclic subspace codes in which the relation between k and n is polynomial, and in particular, linear. As a result, a conjecture by Trautmann et al. regarding the existence of non-Trivial cyclic subspace codes is resolved for most parameters, and multi-orbit cyclic subspace codes are attained, whose cardinality is within a constant factor (close to 1/2) from the sphere-packing bound for subspace codes.

KW - Sidon sets

KW - Sidon spaces

KW - cyclic subspace codes

KW - network coding

UR - http://www.scopus.com/inward/record.url?scp=85032454900&partnerID=8YFLogxK

U2 - 10.1109/TIT.2017.2766178

DO - 10.1109/TIT.2017.2766178

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:85032454900

SN - 0018-9448

VL - 64

SP - 4412

EP - 4422

JO - IEEE Transactions on Information Theory

JF - IEEE Transactions on Information Theory

IS - 6

ER -