TY - JOUR
T1 - Constraints on the emitting region of the gamma-rays observed in GW170817
AU - Matsumoto, Tatsuya
AU - Nakar, Ehud
AU - Piran, Tsvi
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2019/2/11
Y1 - 2019/2/11
N2 - The gravitational waves from the neutron star merger event GW170817 were accompanied by an unusually weak short gamma-ray burst (sGRB) 170817A, by an optical/IR macronova/kilonova and by a long-lasting radio to X-rays counterpart. While association of sGRBs with mergers was predicted a long time ago, the luminosity of this prompt γ -ray emission was weaker by a few orders of magnitude than all known previous sGRBs and it was softer than typical sGRBs. This raises the question whether the γ -rays that we have seen were a regular sGRB viewed off-axis. We revisit this question following recent refined analyses of the γ -ray signal and the VLBI observations that revealed the angular structure of the relativistic outflow: observing angle of ∼20◦, a narrow jet with a core ≾5◦ and Eiso > 1052 erg. We show here that if the γ -ray spectrum is described by a Comptonized power law with Ep > 185 keV, then regardless of the detailed angular structure of the jet - top-hat or structured: (i) the region emitting the observed γ -rays must have been moving with a Lorentz factor Γ ≳ 5; (ii) the observed γ -rays were not 'off-axis' emission (viewing angle >1/Γ) emerging from the core of the jet (where a regular sGRB was most likely produced); (iii) the γ -ray emission region was either 'on-axis' (at an angle < 1/Γ) or if it was 'off-axis' then the observing angle must have been small (<5◦) and the on-axis emission from this region was too faint and too hard to resemble a regular sGRB.
AB - The gravitational waves from the neutron star merger event GW170817 were accompanied by an unusually weak short gamma-ray burst (sGRB) 170817A, by an optical/IR macronova/kilonova and by a long-lasting radio to X-rays counterpart. While association of sGRBs with mergers was predicted a long time ago, the luminosity of this prompt γ -ray emission was weaker by a few orders of magnitude than all known previous sGRBs and it was softer than typical sGRBs. This raises the question whether the γ -rays that we have seen were a regular sGRB viewed off-axis. We revisit this question following recent refined analyses of the γ -ray signal and the VLBI observations that revealed the angular structure of the relativistic outflow: observing angle of ∼20◦, a narrow jet with a core ≾5◦ and Eiso > 1052 erg. We show here that if the γ -ray spectrum is described by a Comptonized power law with Ep > 185 keV, then regardless of the detailed angular structure of the jet - top-hat or structured: (i) the region emitting the observed γ -rays must have been moving with a Lorentz factor Γ ≳ 5; (ii) the observed γ -rays were not 'off-axis' emission (viewing angle >1/Γ) emerging from the core of the jet (where a regular sGRB was most likely produced); (iii) the γ -ray emission region was either 'on-axis' (at an angle < 1/Γ) or if it was 'off-axis' then the observing angle must have been small (<5◦) and the on-axis emission from this region was too faint and too hard to resemble a regular sGRB.
KW - Gamma-ray burst: individual: GRB 170817A
KW - Gravitational waves
KW - Stars: neutron
UR - http://www.scopus.com/inward/record.url?scp=85060229091&partnerID=8YFLogxK
U2 - 10.1093/mnras/sty3200
DO - 10.1093/mnras/sty3200
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85060229091
SN - 0035-8711
VL - 483
SP - 1247
EP - 1255
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -