Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion

Tobias Holder*, Daniel Kaplan, Binghai Yan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Nonlinear optical response is well studied in the context of semiconductors and has gained a renaissance in studies of topological materials in the recent decade. So far it mainly deals with nonmagnetic materials and it is believed to root in the Berry curvature of the material band structure. In this work we revisit the general formalism for the second-order optical response and focus on the consequences of the time-reversal-symmetry (T) breaking, by a diagrammatic approach. We have identified three physical mechanisms to generate a DC photocurrent, i.e., the Berry curvature, a term closely related to the quantum metric, and the diabatic motion. All three effects can be understood intuitively from the anomalous acceleration. The first two terms are respectively the antisymmetric and symmetric parts of the quantum geometric tensor. The last term is due to the dynamical antilocalization that appears from the phase accumulation between time-reversed fermion loops. Additionally, we derive the semiclassical conductivity that includes both intra- and interband effects. We find that T breaking can lead to a greatly enhanced nonlinear anomalous Hall effect that is beyond the contribution by the Berry curvature dipole.

Original languageEnglish
Article number033100
JournalPhysical Review Research
Volume2
Issue number3
DOIs
StatePublished - Jul 2020
Externally publishedYes

Funding

FundersFunder number
Horizon 2020 Framework Programme815869

    Fingerprint

    Dive into the research topics of 'Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion'. Together they form a unique fingerprint.

    Cite this