ConceptLab: Creative Concept Generation using VLM-Guided Diffusion Prior Constraints

Elad Richardson*, Kfir Goldberg, Yuval Alaluf, Daniel Cohen-Or

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Recent text-to-image generative models have enabled us to transform our words into vibrant, captivating imagery. The surge of personalization techniques that has followed has also allowed us to imagine unique concepts in new scenes. However, an intriguing question remains: How can we generate a new, imaginary concept that has never been seen before? In this article, we present the task of creative text-to-image generation, where we seek to generate new members of a broad category (e.g., generating a pet that differs from all existing pets). We leverage the under-studied Diffusion Prior models and show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior, resulting in a set of "prior constraints."To keep our generated concept from converging into existing members, we incorporate a question-answering Vision-Language Model that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations. Finally, we show that our prior constraints can also serve as a strong mixing mechanism allowing us to create hybrids between generated concepts, introducing even more flexibility into the creative process.

Original languageEnglish
Article number34
JournalACM Transactions on Graphics
Volume43
Issue number3
DOIs
StatePublished - 25 Jun 2024

Keywords

  • Diffusion Models
  • Image Generation
  • Personalization

Fingerprint

Dive into the research topics of 'ConceptLab: Creative Concept Generation using VLM-Guided Diffusion Prior Constraints'. Together they form a unique fingerprint.

Cite this