Computing the discrete Fréchet distance in subquadratic time

Pankaj K. Agarwal*, Rinat Ben Avraham, Haim Kaplan, Micha Sharir

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The Fréchet distance is a similarity measure between two curves A and B that takes into account the location and ordering of the points along the two curves: Informally, it is the minimum length of a leash required to connect a dog, walking along A, and its owner, walking along B, as they walk without backtracking along their respective curves from one endpoint to the other. The discrete Fréchet distance replaces the dog and its owner by a pair of frogs that can only reside on n and m specific stones on the curves A and B, respectively. These frogs hop from one stone to the next without backtracking, and the discrete Fréchet distance is the minimum length of a "leash" that connects the frogs and allows them to execute such a sequence of hops. It can be computed in quadratic time by a straightforward dynamic programming algorithm. We present the first subquadratic algorithm for computing the discrete Fréchet distance between two sequences of points in the plane. Assuming m ≤ n, the algorithm runs in O(mn log log n/log n) time, in the standard RAM model, using O(n) storage. Our approach uses the geometry of the problem in a subtle way to encode legal positions of the frogs as states of a finite automaton.

Original languageEnglish
Title of host publicationProceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013
PublisherAssociation for Computing Machinery
Pages156-167
Number of pages12
ISBN (Print)9781611972511
DOIs
StatePublished - 2013
Event24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 - New Orleans, LA, United States
Duration: 6 Jan 20138 Jan 2013

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013
Country/TerritoryUnited States
CityNew Orleans, LA
Period6/01/138/01/13

Fingerprint

Dive into the research topics of 'Computing the discrete Fréchet distance in subquadratic time'. Together they form a unique fingerprint.

Cite this