Computing maximally separated sets in the plane

Pankaj K. Agarwal*, Mark Overmars, Micha Sharir

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Let S be a set of n points in ℝ2. Given an integer 1 ≤ k ≤ n, we wish to find a maximally separated subset I ⊆ S of size k; this is a subset for which the minimum among the (2k) pairwise distances between its points is as large as possible. The decision problem associated with this problem is to determine whether there exists I ⊆ S, |I| = k, so that all (2k) pairwise distances in I are at least 2. This problem can also be formulated in terms of disk-intersection graphs: Let D be the set of unit disks centered at the points of S. The disk-intersection graph G of D has as edges all pairs of disks with nonempty intersection. Any set I with the above properties is then the set of centers of disks that form an independent set in the graph G. This problem is known to be NP-complete if k is part of the input. In this paper we first present a linear-time ε-approximation algorithm for any constant k. Next we give exact algorithms for the cases k = 3 and k = 4 that run in time O(n 4/3polylog(n)). We also present a simpler nO(√k)- time exact algorithm (as compared with the recent algorithm in [J. Alber and J. Fiala, J. Algorithms, 52 (2004), pp. 134-151]) for arbitrary values of k.

Original languageEnglish
Pages (from-to)815-834
Number of pages20
JournalSIAM Journal on Computing
Volume36
Issue number3
DOIs
StatePublished - 2006

Keywords

  • Disk-intersection graphs
  • Geometric optimization
  • Independent set

Fingerprint

Dive into the research topics of 'Computing maximally separated sets in the plane'. Together they form a unique fingerprint.

Cite this