Computer-generated three-dimensional animation of the mitral valve

Joseph H. Dayan, Aaron Oliker, Ram Sharony, F. Gregory Baumann, Aubrey Galloway, Stephen B. Colvin, D. Craig Miller, Eugene A. Grossi*, Pasala Ravichandran, Vaughn Starnes

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Objective: Three-dimensional motion-capture data offer insight into the mechanical differences of mitral valve function in pathologic states. Although this technique is precise, the resulting time-varying data sets can be both difficult to interpret and visualize. We used a new technique to transform these 3-dimensional ovine numeric analyses into an animated human model of the mitral apparatus that can be deformed into various pathologic states. Methods: In vivo, high-speed, biplane cinefluoroscopic images of tagged ovine mitral apparatus were previously analyzed under normal and pathologic conditions. These studies produced serial 3-dimensional coordinates. By using commercial animation and custom software, animated 3-dimensional models were constructed of the mitral annulus, leaflets, and subvalvular apparatus. The motion data were overlaid onto a detailed model of the human heart, resulting in a dynamic reconstruction. Results: Numeric motion-capture data were successfully converted into animated 3-dimensional models of the mitral valve. Structures of interest can be isolated by eliminating adjacent anatomy. The normal and pathophysiologic dynamics of the mitral valve complex can be viewed from any perspective. Conclusion: This technique provides easy and understandable visualization of the complex and time-varying motion of the mitral apparatus. This technology creates a valuable research and teaching tool for the conceptualization of mitral valve dysfunction and the principles of repair.

Original languageEnglish
Pages (from-to)763-769
Number of pages7
JournalJournal of Thoracic and Cardiovascular Surgery
Issue number3
StatePublished - Mar 2004
Externally publishedYes


FundersFunder number
Foundation for Research in Cardiac Surgery and Cardiovascular Biology


    Dive into the research topics of 'Computer-generated three-dimensional animation of the mitral valve'. Together they form a unique fingerprint.

    Cite this