TY - JOUR
T1 - Compositional Lotka-Volterra describes microbial dynamics in the simplex
AU - Joseph, Tyler A.
AU - Shenhav, Liat
AU - Xavier, Joao B.
AU - Halperin, Eran
AU - Pe’er, Itsik
N1 - Publisher Copyright:
© 2020 Joseph et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/5
Y1 - 2020/5
N2 - Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed “compositional” Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature—a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances—and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.
AB - Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed “compositional” Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature—a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances—and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.
UR - http://www.scopus.com/inward/record.url?scp=85086108183&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1007917
DO - 10.1371/journal.pcbi.1007917
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32469867
AN - SCOPUS:85086108183
SN - 1553-734X
VL - 16
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 5
M1 - e1007917
ER -