TY - JOUR
T1 - Complexity Theory Column 88
T2 - Challenges in Polynomial Factorization1
AU - Forbes, Michael A.
AU - Shpilka, Amir
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2015
Y1 - 2015
N2 - Algebraic complexity theory studies the complexity of computing (multivariate) polynomials efficiently using algebraic circuits. This succinct representation leads to fundamental algorithmic challenges such as the polynomial identity testing (PIT) problem (decide nonzeroness of the computed polynomial) and the polynomial factorization problem (compute succinct representations of the factors of the circuit). While the Schwartz-Zippel-DeMillo-Lipton Lemma [Sch80,Zip79,DL78] gives an easy randomized algorithm for PIT, randomized algorithms for factorization require more ideas as given by Kaltofen [Kal89]. However, even derandomizing PIT remains a fundamental problem in understanding the power of randomness.In this column, we survey the factorization problem, discussing the algorithmic ideas as well as the applications to other problems. We then discuss the challenges ahead, in particular focusing on the goal of obtaining deterministic factoring algorithms. While deterministic PIT algorithms have been developed for various restricted circuit classes, there are very few corresponding factoring algorithms. We discuss some recent progress on the divisibility testing problem (test if a given polynomial divides another given polynomial) which captures some of the difficulty of factoring. Along the way we attempt to highlight key challenges whose solutions we hope will drive progress in the area.
AB - Algebraic complexity theory studies the complexity of computing (multivariate) polynomials efficiently using algebraic circuits. This succinct representation leads to fundamental algorithmic challenges such as the polynomial identity testing (PIT) problem (decide nonzeroness of the computed polynomial) and the polynomial factorization problem (compute succinct representations of the factors of the circuit). While the Schwartz-Zippel-DeMillo-Lipton Lemma [Sch80,Zip79,DL78] gives an easy randomized algorithm for PIT, randomized algorithms for factorization require more ideas as given by Kaltofen [Kal89]. However, even derandomizing PIT remains a fundamental problem in understanding the power of randomness.In this column, we survey the factorization problem, discussing the algorithmic ideas as well as the applications to other problems. We then discuss the challenges ahead, in particular focusing on the goal of obtaining deterministic factoring algorithms. While deterministic PIT algorithms have been developed for various restricted circuit classes, there are very few corresponding factoring algorithms. We discuss some recent progress on the divisibility testing problem (test if a given polynomial divides another given polynomial) which captures some of the difficulty of factoring. Along the way we attempt to highlight key challenges whose solutions we hope will drive progress in the area.
U2 - 10.1145/2852040.2852051
DO - 10.1145/2852040.2852051
M3 - מאמר
VL - 46
SP - 32
EP - 49
JO - SIGACT News
JF - SIGACT News
SN - 0163-5700
IS - 4
ER -