Complex-source pulsed-beam fields

Ehud Heyman, L. B. Felsen

Research output: Contribution to journalArticlepeer-review

132 Scopus citations

Abstract

Pulsed beams (PB’s) are time-dependent wave fields that are confined in beamlike fashion in transverse planes perpendicular to the propagation axis, whereas confinement along the axis is due to temporal windowing. Because they have these properties, pulsed beams are useful wave objects for generating and synthesizing highly focused transient fields. The PB problem is addressed here within the context of fundamental Green’s-function propagators for the time-dependent field equations. In a departure from known results in the frequency domain, by which beam solutions can be generated from point-source solutions by displacing the source coordinate location into a complex coordinate space, the complex extension is applied here as well to the source initiation time. This procedure converts the conventional causal impulsive-source Green’s-function propagator into a noncausal PB propagator, which must be defined as an analytic signal because, owing to causality, the analytic continuation into the complex domain cannot be performed by direct substitution. This being done, PB’s can be manipulated as conventional Green’s functions. Some previous results obtained by similar methods are viewed here from a sharper perspective, and new results, both analytical and numerical, are presented that grant basic insight into the PB behavior, including the ability to excite these fields by finite-causal-aperture-source distributions. Besides the basic (analytic Green’s-function) PB, examples include PB’s with frequency spectra of special interest. Particular attention is paid to the PB synthesis of focus-wave modes, which are source-free solutions of the time-dependent wave equation, and to the compact PB formulation of wave fields synthesized by focus-wave-mode spectral superposition.

Original languageEnglish
Pages (from-to)806-817
Number of pages12
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume6
Issue number6
DOIs
StatePublished - Jun 1989

Fingerprint

Dive into the research topics of 'Complex-source pulsed-beam fields'. Together they form a unique fingerprint.

Cite this