Complex legendre duality

B. O. Berndtsson, Dario Cordero-Erausquin, Bo’Az Klartag, Yanir A. Rubinstein

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We introduce complex generalizations of the classical Legendre transform, operating on Kähler metrics on a compact complex manifold. These Legendre transforms give explicit local isometric symmetries for the Mabuchi metric on the space of Kähler metrics around any real analytic Kähler metric, answering a question originating in Semmes’ work.

Original languageEnglish
Pages (from-to)323-339
Number of pages17
JournalAmerican Journal of Mathematics
Volume142
Issue number1
DOIs
StatePublished - Feb 2020

Funding

FundersFunder number
National Science Foundation0802923, 1206284, DMS-0802923, 1440140, 1515703
Bloom's Syndrome Foundation
European Research Council
Agence Nationale de la Recherche
United States-Israel Binational Science Foundation2012236

    Fingerprint

    Dive into the research topics of 'Complex legendre duality'. Together they form a unique fingerprint.

    Cite this