TY - GEN
T1 - Competitive analysis with a sample and the secretary problem
AU - Kaplan, Haim
AU - Naori, David
AU - Raz, Danny
N1 - Publisher Copyright:
Copyright © 2020 by SIAM
PY - 2020
Y1 - 2020
N2 - We extend the standard online worst-case model to accommodate past experience which is available to the online player in many practical scenarios. We do this by revealing a random sample of the adversarial input to the online player ahead of time. The online player competes with the expected optimal value on the part of the input that arrives online. Our model bridges between existing online stochastic models (e.g., items are drawn i.i.d. from a distribution) and the online worst-case model. We also extend in a similar manner (by revealing a sample) the online random-order model. We study the classical secretary problem in our new models. In the worst-case model we present a simple online algorithm with optimal competitive-ratio for any sample size. In the random-order model, we also give a simple online algorithm with an almost tight competitive-ratio for small sample sizes. Interestingly, we prove that for a large enough sample, no algorithm can be simultaneously optimal both in the worst-cast and random-order models.
AB - We extend the standard online worst-case model to accommodate past experience which is available to the online player in many practical scenarios. We do this by revealing a random sample of the adversarial input to the online player ahead of time. The online player competes with the expected optimal value on the part of the input that arrives online. Our model bridges between existing online stochastic models (e.g., items are drawn i.i.d. from a distribution) and the online worst-case model. We also extend in a similar manner (by revealing a sample) the online random-order model. We study the classical secretary problem in our new models. In the worst-case model we present a simple online algorithm with optimal competitive-ratio for any sample size. In the random-order model, we also give a simple online algorithm with an almost tight competitive-ratio for small sample sizes. Interestingly, we prove that for a large enough sample, no algorithm can be simultaneously optimal both in the worst-cast and random-order models.
UR - http://www.scopus.com/inward/record.url?scp=85084067009&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85084067009
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 2082
EP - 2095
BT - 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
A2 - Chawla, Shuchi
PB - Association for Computing Machinery
T2 - 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
Y2 - 5 January 2020 through 8 January 2020
ER -