TY - JOUR
T1 - Competition for nutritional resources masks the true frequency of bacterial mutants
AU - Neves, Henrique Iglesias
AU - Machado, Gabriella Trombini
AU - Ramos, Taíssa Cristina dos Santos
AU - Yang, Hyun Mo
AU - Yagil, Ezra
AU - Spira, Beny
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Background: It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results: We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion: This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates.
AB - Background: It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results: We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion: This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates.
KW - Glycerol-2-phosphate
KW - Mutagenesis
KW - Mutant frequency
KW - Mutation rate
KW - PHO regulon
KW - Tragedy of the commons
KW - pst operon
UR - http://www.scopus.com/inward/record.url?scp=85098476025&partnerID=8YFLogxK
U2 - 10.1186/s12915-020-00913-1
DO - 10.1186/s12915-020-00913-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33317515
AN - SCOPUS:85098476025
SN - 1741-7007
VL - 18
JO - BMC Biology
JF - BMC Biology
IS - 1
M1 - 194
ER -