TY - JOUR
T1 - Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution
AU - Doctors, L. J.
AU - Dagan, G.
PY - 1980/6
Y1 - 1980/6
N2 - The wave resistance of a two-dimensional pressure distribution which moves steadily over water of finite depth is computed with the aid of four approximate methods: (i) consistent small-amplitude perturbation expansion up to third order; (ii) continuous mapping by Guilloton's displacements; (iii) small-Froude-number Baba & Takekuma's approximation; and (iv) Ursell's theory of wave propagation as applied by Inui & Kajitani (1977). The results are compared, for three fixed Froude numbers, with the numerical computations of von Kerczek & Salvesen for a given smooth pressure patch. Nonlinear effects are quite large and it is found that (i) yields accurate results, that (ii) acts in the right direction, but quantitatively is not entirely satisfactory, that (iii) yields poor results and (iv) is quite accurate. The wave resistance is subsequently computed by (i)-(iv) for a broad range of Froude numbers. The perturbation theory is shown to break down at low Froude numbers for a blunter pressure profile. The Inui-Kajitani method is shown to be equivalent to a continuous mapping with a horizontal displacement roughly twice Guilloton's. The free-surface nonlinear effect results in an apparent shift of the first-order resistance curve, i.e. in a systematic change of the effective Froude number.
AB - The wave resistance of a two-dimensional pressure distribution which moves steadily over water of finite depth is computed with the aid of four approximate methods: (i) consistent small-amplitude perturbation expansion up to third order; (ii) continuous mapping by Guilloton's displacements; (iii) small-Froude-number Baba & Takekuma's approximation; and (iv) Ursell's theory of wave propagation as applied by Inui & Kajitani (1977). The results are compared, for three fixed Froude numbers, with the numerical computations of von Kerczek & Salvesen for a given smooth pressure patch. Nonlinear effects are quite large and it is found that (i) yields accurate results, that (ii) acts in the right direction, but quantitatively is not entirely satisfactory, that (iii) yields poor results and (iv) is quite accurate. The wave resistance is subsequently computed by (i)-(iv) for a broad range of Froude numbers. The perturbation theory is shown to break down at low Froude numbers for a blunter pressure profile. The Inui-Kajitani method is shown to be equivalent to a continuous mapping with a horizontal displacement roughly twice Guilloton's. The free-surface nonlinear effect results in an apparent shift of the first-order resistance curve, i.e. in a systematic change of the effective Froude number.
UR - http://www.scopus.com/inward/record.url?scp=0018952313&partnerID=8YFLogxK
U2 - 10.1017/S002211208000033X
DO - 10.1017/S002211208000033X
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0018952313
SN - 0022-1120
VL - 98
SP - 647
EP - 672
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
IS - 3
ER -