Comparison of ν μ - Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions: MicroBooNE Collaboration

C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, A. Bhat, K. Bhattacharya, M. Bishai, A. Blake, T. Bolton, L. Camilleri, D. Caratelli, R. Castillo Fernandez, F. CavannaG. Cerati, H. Chen, Y. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, L. Cooper-Troendle, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, A. Diaz, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, J. J. Evans, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, P. Guzowski, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. A. Horton-Smith, A. Hourlier, E. C. Huang, C. James, J. Jan de Vries, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, Y. J. Jwa, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, S. Marcocci, C. Mariani, J. Marshall, D. A. Martinez Caicedo, A. Mastbaum, V. Meddage, T. Mettler, T. Miceli, G. B. Mills, A. Mogan, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, M. Murphy, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Pandey, V. Paolone, A. Papadopoulou, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique*, L. Rochester, M. Ross-Lonergan, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St John, T. Strauss, K. Sutton, S. Sword-Fehlberg, A. M. Szelc, N. Tagg, W. Tang, K. Terao, M. Thomson, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, H. Wei, D. A. Wickremasinghe, K. Wierman, Z. Williams, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. Yarbrough, L. E. Yates, G. P. Zeller, J. Zennamo, C. Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800MeV, using an exposure corresponding to 5.0 × 10 19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity.

Original languageEnglish
Article number248
JournalEuropean Physical Journal C
Volume79
Issue number3
DOIs
StatePublished - 1 Mar 2019

Funding

FundersFunder number
High Energy Physics and Nuclear Physics
U.S. Department of Energy
Science and Technology Facilities Council of the United Kingdom
Office of Science
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Royal Society
Not addedST/R000271/1, ST/N000447/1, ST/R00014X/1
Not added76019
National Science Foundation1801996
Fermi Research Alliance, LLCDE-AC02-07CH11359
Not addedIncentivo/SAU/LA0001/2013

    Fingerprint

    Dive into the research topics of 'Comparison of ν μ - Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions: MicroBooNE Collaboration'. Together they form a unique fingerprint.

    Cite this