Commitment Capacity under Cost Constraints

Manideep Mamindlapally, Anuj Kumar Yadav, Manoj Mishra, Amitalok J. Budkuley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.

Original languageEnglish
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3208-3213
Number of pages6
ISBN (Electronic)9781538682098
DOIs
StatePublished - 12 Jul 2021
Externally publishedYes
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: 12 Jul 202120 Jul 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period12/07/2120/07/21

Fingerprint

Dive into the research topics of 'Commitment Capacity under Cost Constraints'. Together they form a unique fingerprint.

Cite this