TY - GEN
T1 - Commitment Capacity under Cost Constraints
AU - Mamindlapally, Manideep
AU - Yadav, Anuj Kumar
AU - Mishra, Manoj
AU - Budkuley, Amitalok J.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/7/12
Y1 - 2021/7/12
N2 - We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
AB - We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
UR - http://www.scopus.com/inward/record.url?scp=85115095337&partnerID=8YFLogxK
U2 - 10.1109/ISIT45174.2021.9518204
DO - 10.1109/ISIT45174.2021.9518204
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85115095337
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 3208
EP - 3213
BT - 2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Symposium on Information Theory, ISIT 2021
Y2 - 12 July 2021 through 20 July 2021
ER -