TY - JOUR
T1 - Combined Zonation of the African-Levantine-Caucasian Areal of Ancient Hominin
T2 - Review and Integrated Analysis of Paleogeographical, Stratigraphic and Geophysical-Geodynamical Data
AU - Eppelbaum, Lev V.
AU - Katz, Youri I.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1
Y1 - 2022/1
N2 - The origin of the man on Earth is directly associated with the determination of directions of the flow distribution of the ancient man dispersal to adjacent territories. In such studies, mainly landscape and climatological changes are traditionally considered. We suggest that along with the above factors, regional tectonic-geodynamic factors played a dominant role in the character of dispersal. The considered African-Levantine-Caucasian region is one of the most geologically complex regions of the world, where collisional and spreading processes of geodynamics converge. For the first time, we determined an essential influence of the Akchagylian hydrospheric maximum (about 200 m above the mean sea level) limiting the early dispersal of hominins from Africa to Eurasia. We propose that the Levantine Corridor emerged after the end of the Akchagylian transgression and landscape forming in the Eastern Mediterranean. This corridor location was formed by the movements between the Dead Sea Transform and the boundary of the carbonate platform of the Mesozoic Terrane Belt. Further landscape evolution was largely determined by the geodynamic behavior of the deep mantle rotating structure occurring below the central part of the region under study. All the mentioned events around and in the Levantine Corridor have been studied in detail on the basis of the combined geodynamic, paleogeographic, and paleomagnetic analyses performed in northern Israel (Carmel Uplift and Galilee Plateau). Careful studies of the Evron Quarry geological section indicate that it is unique for the dating of marine and continental archaeological sequences and sheds light on the early dispersal of hominins along the Levantine Corridor.
AB - The origin of the man on Earth is directly associated with the determination of directions of the flow distribution of the ancient man dispersal to adjacent territories. In such studies, mainly landscape and climatological changes are traditionally considered. We suggest that along with the above factors, regional tectonic-geodynamic factors played a dominant role in the character of dispersal. The considered African-Levantine-Caucasian region is one of the most geologically complex regions of the world, where collisional and spreading processes of geodynamics converge. For the first time, we determined an essential influence of the Akchagylian hydrospheric maximum (about 200 m above the mean sea level) limiting the early dispersal of hominins from Africa to Eurasia. We propose that the Levantine Corridor emerged after the end of the Akchagylian transgression and landscape forming in the Eastern Mediterranean. This corridor location was formed by the movements between the Dead Sea Transform and the boundary of the carbonate platform of the Mesozoic Terrane Belt. Further landscape evolution was largely determined by the geodynamic behavior of the deep mantle rotating structure occurring below the central part of the region under study. All the mentioned events around and in the Levantine Corridor have been studied in detail on the basis of the combined geodynamic, paleogeographic, and paleomagnetic analyses performed in northern Israel (Carmel Uplift and Galilee Plateau). Careful studies of the Evron Quarry geological section indicate that it is unique for the dating of marine and continental archaeological sequences and sheds light on the early dispersal of hominins along the Levantine Corridor.
KW - Ancient man dispersal
KW - Deep geodynamic factors
KW - Hydrospheric events
KW - Levantine Corridor
KW - Paleogeographic reconstructions
KW - Paleomagnetic correlation
KW - Tectonic-geodynamic zonation
UR - http://www.scopus.com/inward/record.url?scp=85122747284&partnerID=8YFLogxK
U2 - 10.3390/geosciences12010021
DO - 10.3390/geosciences12010021
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85122747284
SN - 2076-3263
VL - 12
JO - Geosciences (Switzerland)
JF - Geosciences (Switzerland)
IS - 1
M1 - 21
ER -