Combinatorial list-decoding of Reed-Solomon codes beyond the Johnson radius

Chong Shangguan, Itzhak Tamo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

List-decoding of Reed-Solomon (RS) codes beyond the so called Johnson radius has been one of the main open questions in coding theory and theoretical computer science since the work of Guruswami and Sudan. It is now known by the work of Rudra and Wootters, using techniques from high dimensional probability, that over large enough alphabets there exist RS codes that are indeed list-decodable beyond this radius. In this paper we take a more combinatorial approach that allows us to determine the precise relation (up to the exact constant) between the decoding radius and the list size. We prove a generalized Singleton bound for a given list size, and conjecture that the bound is tight for most RS codes over large enough finite fields. We also show that the conjecture holds true for list sizes 2 and 3, and as a by product show that most RS codes with a rate of at least 1/9 are list-decodable beyond the Johnson radius. Lastly, we give the first explicit construction of such RS codes. The main tools used in the proof are a new type of linear dependency between codewords of a code that are contained in a small Hamming ball, and the notion of cycle space from Graph Theory. Both of them have not been used before in the context of list-decoding.

Original languageEnglish
Title of host publicationSTOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
EditorsKonstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, Julia Chuzhoy
PublisherAssociation for Computing Machinery
Pages538-551
Number of pages14
ISBN (Electronic)9781450369794
DOIs
StatePublished - 8 Jun 2020
Event52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020 - Chicago, United States
Duration: 22 Jun 202026 Jun 2020

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020
Country/TerritoryUnited States
CityChicago
Period22/06/2026/06/20

Keywords

  • Generalized Singleton bound
  • Johnson radius
  • List-decoding
  • Reed-Solomon codes

Fingerprint

Dive into the research topics of 'Combinatorial list-decoding of Reed-Solomon codes beyond the Johnson radius'. Together they form a unique fingerprint.

Cite this