Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

Timothy Jeruzalski, John Kanji, Alec Jacobson, David I.W. Levin

Research output: Contribution to journalArticlepeer-review

Abstract

Methods to compress simulation data are invaluable as they facilitate efficient transmission along the visual effects pipeline, fast and efficient replay of simulations for visualization and enable storage of scientific data. However, all current approaches to compressing simulation data require access to the entire dynamic simulation, leading to large memory requirements and additional computational burden. In this paper we perform compression of contact-dominated, rigid body simulations in an online, error-bounded fashion. This has the advantage of requiring access to only a narrow window of simulation data at a time while still achieving good agreement with the original simulation. Our approach is simulator agnostic allowing us to compress data from a variety of sources. We demonstrate the efficacy of our algorithm by compressing contact-dominated rigid body simulations from a number of sources, achieving compression rates of up to 360 times over raw data size.

Original languageEnglish
Pages (from-to)11-20
Number of pages10
JournalComputer Graphics Forum
Volume37
Issue number8
DOIs
StatePublished - Dec 2018
Externally publishedYes

Keywords

  • CCS Concepts
  • Physical simulation
  • Simulation tools
  • •Computing methodologies → Animation

Fingerprint

Dive into the research topics of 'Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization'. Together they form a unique fingerprint.

Cite this