Coherency sensitive hashing

Simon Korman*, Shai Avidan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

160 Scopus citations

Abstract

Coherency Sensitive Hashing (CSH) extends Locality Sensitivity Hashing (LSH) and PatchMatch to quickly find matching patches between two images. LSH relies on hashing, which maps similar patches to the same bin, in order to find matching patches. PatchMatch, on the other hand, relies on the observation that images are coherent, to propagate good matches to their neighbors, in the image plane. It uses random patch assignment to seed the initial matching. CSH relies on hashing to seed the initial patch matching and on image coherence to propagate good matches. In addition, hashing lets it propagate information between patches with similar appearance (i.e., map to the same bin). This way, information is propagated much faster because it can use similarity in appearance space or neighborhood in the image plane. As a result, CSH is at least three to four times faster than PatchMatch and more accurate, especially in textured regions, where reconstruction artifacts are most noticeable to the human eye. We verified CSH on a new, large scale, data set of 133 image pairs.

Original languageEnglish
Title of host publication2011 International Conference on Computer Vision, ICCV 2011
Pages1607-1614
Number of pages8
DOIs
StatePublished - 2011
Event2011 IEEE International Conference on Computer Vision, ICCV 2011 - Barcelona, Spain
Duration: 6 Nov 201113 Nov 2011

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Conference

Conference2011 IEEE International Conference on Computer Vision, ICCV 2011
Country/TerritorySpain
CityBarcelona
Period6/11/1113/11/11

Fingerprint

Dive into the research topics of 'Coherency sensitive hashing'. Together they form a unique fingerprint.

Cite this