TY - JOUR
T1 - Cochlear third window in the scala vestibuli
T2 - An animal model
AU - Preis, Michal
AU - Attias, Joseph
AU - Hadar, Tuvia
AU - Nageris, Ben I.
PY - 2009/8
Y1 - 2009/8
N2 - BACKGROUND: Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. HYPOTHESIS: The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. METHODS: The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. RESULTS: In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). CONCLUSION: The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
AB - BACKGROUND: Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. HYPOTHESIS: The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. METHODS: The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. RESULTS: In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). CONCLUSION: The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
KW - Cochlea
KW - Scala vestibuli
KW - Third window
UR - http://www.scopus.com/inward/record.url?scp=68849124135&partnerID=8YFLogxK
U2 - 10.1097/MAO.0b013e3181a66d0f
DO - 10.1097/MAO.0b013e3181a66d0f
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:68849124135
VL - 30
SP - 657
EP - 660
JO - Otology and Neurotology
JF - Otology and Neurotology
SN - 1531-7129
IS - 5
ER -