TY - JOUR
T1 - Coagulopathy triggered autoimmunity
T2 - Experimental antiphospholipid syndrome in factor V Leiden mice
AU - Katzav, Aviva
AU - Grigoriadis, Nikolaos C.
AU - Ebert, Tania
AU - Touloumi, Olga
AU - Blank, Miri
AU - Pick, Chaim G.
AU - Shoenfeld, Yehuda
AU - Chapman, Joab
N1 - Funding Information:
This research was supported by The Israel Science Foundation (grant number 917/08). This work was performed in partial fulfillment of the requirements for a PhD degree for AK (Sackler Faculty of Medicine, Tel Aviv University, Israel).
PY - 2013/4/4
Y1 - 2013/4/4
N2 - Background: We investigated interactions between genetically and autoimmune-mediated coagulopathies by inducing experimental antiphospholipid syndrome (eAPS) in mice carrying the factor V Leiden (FVL) mutation. Methods: eAPS was induced in heterozygous and homozygous FVL transgenic mice (C57BL/6 background) by immunization with β2-glycoprotein I (β2-GPI). Autoantibody levels were measured at 1 and 5 months post-immunization. Mice were tested at 4 months post-immunization for behavior and cognitive function in the staircase, elevated plus-maze, and swim T-maze tests. Brains were removed and analyzed by immunohistochemistry for inflammatory markers and neurodegenerative processes. Results: A single immunization with β2-GPI induced significantly higher and longer-lasting immune responses, and this was dependent on the number of FVL alleles. At 1 and 5 months post-immunization, levels of antibodies rose from 1.17 ± 0.07 to 1.62 ± 0.17 (optical density units; ODU) in homozygous FVL mice, compared with stable levels of 0.59 ± 0.17 and 0.48 ± 0.16 ODU in heterozygous FVL mice and a drop from 1.62 ± 0.21 to 0.61 ± 0.13 ODU in wild-type mice. Behavioral and cognitive clinical features of eAPS were also correlated with FVL allele load, as assessed by the elevated plus-maze (altered anxiety), staircase (hyperactivity and higher exploration), and swim T-maze (impaired learning) tests. Histological studies identified significant neurodegenerative changes in both grey and white matter in the eAPS-FVL brains. In spite of the potential interaction of two prothrombotic disease states, there were no ischemic lesions seen in this group. Conclusions: The results indicate that genetically mediated coagulopathies increase the risk of developing coagulation-targeted autoimmune responses, and suggest the importance of antibody-mediated neurodegenerative processes in the brain in APS.
AB - Background: We investigated interactions between genetically and autoimmune-mediated coagulopathies by inducing experimental antiphospholipid syndrome (eAPS) in mice carrying the factor V Leiden (FVL) mutation. Methods: eAPS was induced in heterozygous and homozygous FVL transgenic mice (C57BL/6 background) by immunization with β2-glycoprotein I (β2-GPI). Autoantibody levels were measured at 1 and 5 months post-immunization. Mice were tested at 4 months post-immunization for behavior and cognitive function in the staircase, elevated plus-maze, and swim T-maze tests. Brains were removed and analyzed by immunohistochemistry for inflammatory markers and neurodegenerative processes. Results: A single immunization with β2-GPI induced significantly higher and longer-lasting immune responses, and this was dependent on the number of FVL alleles. At 1 and 5 months post-immunization, levels of antibodies rose from 1.17 ± 0.07 to 1.62 ± 0.17 (optical density units; ODU) in homozygous FVL mice, compared with stable levels of 0.59 ± 0.17 and 0.48 ± 0.16 ODU in heterozygous FVL mice and a drop from 1.62 ± 0.21 to 0.61 ± 0.13 ODU in wild-type mice. Behavioral and cognitive clinical features of eAPS were also correlated with FVL allele load, as assessed by the elevated plus-maze (altered anxiety), staircase (hyperactivity and higher exploration), and swim T-maze (impaired learning) tests. Histological studies identified significant neurodegenerative changes in both grey and white matter in the eAPS-FVL brains. In spite of the potential interaction of two prothrombotic disease states, there were no ischemic lesions seen in this group. Conclusions: The results indicate that genetically mediated coagulopathies increase the risk of developing coagulation-targeted autoimmune responses, and suggest the importance of antibody-mediated neurodegenerative processes in the brain in APS.
KW - Antiphospholipid syndrome
KW - Autoantibodies
KW - Autoimmunity
KW - Coagulopathy
KW - Cognitive dysfunction
KW - Experimental antiphospholipid syndrome
KW - Factor V leiden
KW - Hyperactivity
KW - Neurodegeneration
UR - http://www.scopus.com/inward/record.url?scp=84875690089&partnerID=8YFLogxK
U2 - 10.1186/1741-7015-11-92
DO - 10.1186/1741-7015-11-92
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23566870
AN - SCOPUS:84875690089
SN - 1741-7015
VL - 11
JO - BMC Medicine
JF - BMC Medicine
IS - 1
M1 - 92
ER -