Co-occurrence neural network

Irina Shevlev, Shai Avidan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Convolutional Neural Networks (CNNs) became a very popular tool for image analysis. Convolutions are fast to compute and easy to store, but they also have some limitations. First, they are shift-invariant and, as a result, they do not adapt to different regions of the image. Second, they have a fixed spatial layout, so small geometric deformations in the layout of a patch will completely change the filter response. For these reasons, we need multiple filters to handle the different parts and variations in the input. We augment the standard convolutional tools used in CNNs with a new filter that addresses both issues raised above. Our filter combines two terms, a spatial filter and a term that is based on the co-occurrence statistics of input values in the neighborhood. The proposed filter is differentiable and can therefore be packaged as a layer in CNN and trained using back-propagation. We show how to train the filter as part of the network and report results on several data sets. In particular, we replace a convolutional layer with hundreds of thousands of parameters with a Co-occurrence Layer consisting of only a few hundred parameters with minimal impact on accuracy.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages4792-4799
Number of pages8
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Funding

FundersFunder number
Israel Science Foundation1917/15

    Keywords

    • Deep Learning

    Fingerprint

    Dive into the research topics of 'Co-occurrence neural network'. Together they form a unique fingerprint.

    Cite this