TY - JOUR
T1 - Clearing markets via bundles
AU - Feldman, Michal
AU - Lucier, Brendan
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg.
PY - 2014
Y1 - 2014
N2 - We study algorithms for combinatorial market design problems, where a set of heterogeneous and indivisible objects are priced and sold to potential buyers subject to equilibrium constraints. Extending the CWE notion introduced by Feldman et al. [STOC 2013], we introduce the concept of a Market-Clearing Combinatorial Walrasian Equilibium (MC-CWE) as a natural relaxation of the classical Walrasian equilibrium (WE) solution concept. The only difference between a MC-CWE and a WE is the ability for the seller to bundle the items prior to sale. This innocuous and natural bundling operation imposes a plethora of algorithmic and economic challenges and opportunities. Unlike WE, which is guaranteed to exist only for (gross) substitutes valuations, a MC-CWE always exists. The main algorithmic challenge, therefore, is to design computationally efficient mechanisms that generate MC-CWE outcomes that approximately maximize social welfare. For a variety of valuation classes encompassing substitutes and complements (including super-additive, single-minded and budget-additive valuations), we design polynomial-time MC-CWE mechanisms that provide tight welfare approximation results.
AB - We study algorithms for combinatorial market design problems, where a set of heterogeneous and indivisible objects are priced and sold to potential buyers subject to equilibrium constraints. Extending the CWE notion introduced by Feldman et al. [STOC 2013], we introduce the concept of a Market-Clearing Combinatorial Walrasian Equilibium (MC-CWE) as a natural relaxation of the classical Walrasian equilibrium (WE) solution concept. The only difference between a MC-CWE and a WE is the ability for the seller to bundle the items prior to sale. This innocuous and natural bundling operation imposes a plethora of algorithmic and economic challenges and opportunities. Unlike WE, which is guaranteed to exist only for (gross) substitutes valuations, a MC-CWE always exists. The main algorithmic challenge, therefore, is to design computationally efficient mechanisms that generate MC-CWE outcomes that approximately maximize social welfare. For a variety of valuation classes encompassing substitutes and complements (including super-additive, single-minded and budget-additive valuations), we design polynomial-time MC-CWE mechanisms that provide tight welfare approximation results.
UR - http://www.scopus.com/inward/record.url?scp=84921628424&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-44803-8_14
DO - 10.1007/978-3-662-44803-8_14
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84921628424
SN - 0302-9743
VL - 8768
SP - 158
EP - 169
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -