Classes of superoscillating functions

Yakir Aharonov, I. Sabadini*, J. Tollaksen, A. Yger

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


In this paper, we describe how the study of longevity of superoscillating functions has developed over the last several years. Specifically, we show how the evolution of superoscillations for the Schrödinger equation for the free particle naturally lead the authors to the construction of a larger class of superoscillating functions. This basic idea, originally presented in Aharonov et al. (J Math Pures Appl 99:165–173, 2013), was subsequently generalized when different differential and convolution operators replace the Laplacian in the Schrödinger equation, and it eventually led to larger classes of superoscillating functions. In this paper, we outline this process, and we show how to extend these ideas to the case of several variables, and we summarize some recent applications of superoscillations to problems of approximation in the Schwartz spaces of functions.

Original languageEnglish
Pages (from-to)439-454
Number of pages16
JournalQuantum Studies: Mathematics and Foundations
Issue number3
StatePublished - 1 Sep 2018
Externally publishedYes


Dive into the research topics of 'Classes of superoscillating functions'. Together they form a unique fingerprint.

Cite this