TY - JOUR
T1 - Chemistry-Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0
T2 - Development, Evaluation and Application in Better Haze/Fog Prediction in China
AU - Wang, H.
AU - Zhang, X. Y.
AU - Wang, P.
AU - Peng, Y.
AU - Zhang, W. J.
AU - Liu, Z. D.
AU - Han, C.
AU - Li, S. T.
AU - Wang, Y. Q.
AU - Che, H. Z.
AU - Huang, L. P.
AU - Liu, H. L.
AU - Zhang, L.
AU - Zhou, C. H.
AU - Ma, Z. S.
AU - Chen, F. F.
AU - Ma, X.
AU - Wu, X. J.
AU - Zhang, B. H.
AU - Shen, X. S.
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2022/12
Y1 - 2022/12
N2 - The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol-cloud-radiation interaction is achieved to establish the first version (V1) of chemistry-weather (CW) interacted model GRAPES-Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol-radiation, aerosol-cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
AB - The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol-cloud-radiation interaction is achieved to establish the first version (V1) of chemistry-weather (CW) interacted model GRAPES-Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol-radiation, aerosol-cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
KW - aerosol cloud interaction
KW - aerosol radiation interaction
KW - chemistry-weather interaction
KW - haze-fog prediction
KW - numerical weather prediction
KW - visibility prediction
UR - http://www.scopus.com/inward/record.url?scp=85145188659&partnerID=8YFLogxK
U2 - 10.1029/2022MS003222
DO - 10.1029/2022MS003222
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85145188659
SN - 1942-2466
VL - 14
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 12
M1 - e2022MS003222
ER -