TY - JOUR
T1 - Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas
AU - Möller, Peter
AU - Rosenthal, Eliyahu
AU - Geyer, Stefan
AU - Flexer, Akiva
PY - 2007/6
Y1 - 2007/6
N2 - The Ca-Mg relationship in groundwaters strongly points to the overall dolomitization and local albitization. The Mg/Ca ratios reveal two trends by which saline waters develop: increase of Mg/Ca ratio by evaporation and decreasing Mg/Ca ratios due to dolomitization and albitization. Br/Cl vs. Na/Cl ratios demonstrate that albitization does not play a major role which leaves dolomitization to be the main source for decreasing Mg/Ca ratios in saline waters. In the eastern and southern Region of Lake Kinneret, salinization occurs by mixing with a Ca/Mg molar ratio <1 brine (Ha'On type). Along the western shoreline of the Lake, a Ca/Mg > 1 dominates, which developed by the albitization of plagioclase in abundant mafic volcanics and the dolomitization of limestones. The most saline groundwater of the Tabgha-, Fuliya-, and Tiberias clusters could be regional derivatives of at least two mother brines: in diluted form one is represented by Ha'On water, the other is a Na-rich brine of the Zemah type. Additionally, a deep-seated Ca-dominant brine may ascend along the fractures on the western side of Lake Kinneret, which is absent on the eastern side. Groundwaters of the Lower Jordan Valley are chemically different on both sides of the Jordan River, indicating that the exchange of water is insignificant. All saline waters from the Dead Sea and its surroundings represent a complex mixture of brines, and precipitation and local dissolution of halite and gypsum. Many wells of the Arava/Araba Valley pump groundwater from the Upper Cretaceous limestone aquifer, the origin of the water is actually from the Lower Cretaceous Kurnub Group sandstones. Groundwater drawn from the Quaternary alluvial fill either originates from Kurnub Group sandstones (Eilat 108, Yaalon 117) or from altered limestones of the Judea Group. The origin of these waters is from floods flowing through wadis incised into calcareous formations of the Judea Group. On the other hand, as a result of step-faulting, hydraulic contact is locally established between the Kurnub- and the Judea Groups aquifers facilitating the inter-aquifer flow of the confined Kurnub paleowater into the karstic formations of the Judea Group. Two periods of Neogene brine formation are considered: the post-Messinan inland lagoon resulting in drying up of the Sdom Sea and the evaporation of the Pleistocene Samra Lake, which went further through the stage of Lake Lisan to the present Dead Sea. For the first period, major element hydrochemistry suggests that the saline waters and brines in the Jordan-Dead Sea - Arava Valley transform evolved from the gradual evaporation of an accumulating mixture of sea-, ground-, and surface water. Due to the precipitation of carbonates, gypsum, and halite, such an evaporating primary water body was strongly enriched in Mg, Br, and B and shows high molar ratios of Br/Cl, B/Cl, and Mg/Ca but low Na/Cl ratios. The development of the Br/Cl ratio is chemically modelled, showing that indeed brine development is explicable that way. Along with the evaporation brine, evaporites formed which are leached by infiltrating fresh water yielding secondary brines with Na/Cl ratios of 1. When primary brines infiltrated the sub-surface, they were subjected to Mg - Ca exchange in limestones (dolomitization) and to chloritization and albitization in basic igneous rocks turning them into Ca-Cl brines. These tertiary brines are omnipresent in the Rift. The brines of the late Lisan and Dead Sea were generated by evaporating drainage waters, which leached halite, gypsum, and carbonates from the soil and from the sub-surface. All these brines are still being flushed out by meteoric water, resulting in saline groundwaters. This flushing is regionally enhanced by intensive groundwater exploitation. In variable proportions, the Neogene and late Lisan Lake and Recent Dead Sea brines have to be considered as the most serious sources of salinization of groundwaters in the Rift. Deep-seated pre-Sdom brines cannot strictly be excluded, but if active they play a negligible role only.
AB - The Ca-Mg relationship in groundwaters strongly points to the overall dolomitization and local albitization. The Mg/Ca ratios reveal two trends by which saline waters develop: increase of Mg/Ca ratio by evaporation and decreasing Mg/Ca ratios due to dolomitization and albitization. Br/Cl vs. Na/Cl ratios demonstrate that albitization does not play a major role which leaves dolomitization to be the main source for decreasing Mg/Ca ratios in saline waters. In the eastern and southern Region of Lake Kinneret, salinization occurs by mixing with a Ca/Mg molar ratio <1 brine (Ha'On type). Along the western shoreline of the Lake, a Ca/Mg > 1 dominates, which developed by the albitization of plagioclase in abundant mafic volcanics and the dolomitization of limestones. The most saline groundwater of the Tabgha-, Fuliya-, and Tiberias clusters could be regional derivatives of at least two mother brines: in diluted form one is represented by Ha'On water, the other is a Na-rich brine of the Zemah type. Additionally, a deep-seated Ca-dominant brine may ascend along the fractures on the western side of Lake Kinneret, which is absent on the eastern side. Groundwaters of the Lower Jordan Valley are chemically different on both sides of the Jordan River, indicating that the exchange of water is insignificant. All saline waters from the Dead Sea and its surroundings represent a complex mixture of brines, and precipitation and local dissolution of halite and gypsum. Many wells of the Arava/Araba Valley pump groundwater from the Upper Cretaceous limestone aquifer, the origin of the water is actually from the Lower Cretaceous Kurnub Group sandstones. Groundwater drawn from the Quaternary alluvial fill either originates from Kurnub Group sandstones (Eilat 108, Yaalon 117) or from altered limestones of the Judea Group. The origin of these waters is from floods flowing through wadis incised into calcareous formations of the Judea Group. On the other hand, as a result of step-faulting, hydraulic contact is locally established between the Kurnub- and the Judea Groups aquifers facilitating the inter-aquifer flow of the confined Kurnub paleowater into the karstic formations of the Judea Group. Two periods of Neogene brine formation are considered: the post-Messinan inland lagoon resulting in drying up of the Sdom Sea and the evaporation of the Pleistocene Samra Lake, which went further through the stage of Lake Lisan to the present Dead Sea. For the first period, major element hydrochemistry suggests that the saline waters and brines in the Jordan-Dead Sea - Arava Valley transform evolved from the gradual evaporation of an accumulating mixture of sea-, ground-, and surface water. Due to the precipitation of carbonates, gypsum, and halite, such an evaporating primary water body was strongly enriched in Mg, Br, and B and shows high molar ratios of Br/Cl, B/Cl, and Mg/Ca but low Na/Cl ratios. The development of the Br/Cl ratio is chemically modelled, showing that indeed brine development is explicable that way. Along with the evaporation brine, evaporites formed which are leached by infiltrating fresh water yielding secondary brines with Na/Cl ratios of 1. When primary brines infiltrated the sub-surface, they were subjected to Mg - Ca exchange in limestones (dolomitization) and to chloritization and albitization in basic igneous rocks turning them into Ca-Cl brines. These tertiary brines are omnipresent in the Rift. The brines of the late Lisan and Dead Sea were generated by evaporating drainage waters, which leached halite, gypsum, and carbonates from the soil and from the sub-surface. All these brines are still being flushed out by meteoric water, resulting in saline groundwaters. This flushing is regionally enhanced by intensive groundwater exploitation. In variable proportions, the Neogene and late Lisan Lake and Recent Dead Sea brines have to be considered as the most serious sources of salinization of groundwaters in the Rift. Deep-seated pre-Sdom brines cannot strictly be excluded, but if active they play a negligible role only.
KW - Brine
KW - Formation water
KW - Jordan-Dead Sea - Red Sea Rift
KW - Paleohydrogeology
KW - Water/rock interaction
UR - http://www.scopus.com/inward/record.url?scp=34248645702&partnerID=8YFLogxK
U2 - 10.1007/s00531-006-0111-9
DO - 10.1007/s00531-006-0111-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:34248645702
SN - 1437-3254
VL - 96
SP - 541
EP - 566
JO - International Journal of Earth Sciences
JF - International Journal of Earth Sciences
IS - 3
ER -