Cheap optimal control of discrete single input single output systems

B. Priel*, U. Shaked

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This paper presents a solution to the linear discrete quadratic optimal control problem for a single input single output plant with a control weight-ing that tends to zero. Explicit expressions are derived for the optimal gain vector in terms of the first significant powers of the control weighting, and the limiting values of these expressions arc considered. The optimal index of performance is obtained both for the minimum and non-minimum phase plants. The clear distinction between these two types of plants is discussed and the non-vanishing value of the index of performance in the latter case is expressed in terms of the zero directions of the system. Extensions to the single input multi output case and the case where the index of performance is a function of dynamic operators are introduced.

Original languageEnglish
Pages (from-to)1087-1113
Number of pages27
JournalInternational Journal of Control
Volume38
Issue number6
DOIs
StatePublished - Dec 1983

Fingerprint

Dive into the research topics of 'Cheap optimal control of discrete single input single output systems'. Together they form a unique fingerprint.

Cite this